Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin.
نویسندگان
چکیده
Neuronal degeneration and cell death can result from excessive activation of receptors for the excitatory neurotransmitter glutamate; however, the very earliest changes in cytoskeletal organization have not been well documented. We have used an in vitro model system to examine the early consequences of intense glutamate receptor activation on dendritic spine synapses. Cultured hippocampal neurons exposed to NMDA for as little as 5 min exhibited a rapid and extensive loss of dendritic spines. Staining for the presynaptic marker synapsin 1 and the postsynaptic density proteins PSD-95 and the NR1 subunit of NMDA receptors remained intact. The disappearance of spines was accompanied by a selective loss of filamentous actin staining at synapses. The NMDA-induced loss of spine actin was time- and concentration-dependent and blocked by NMDA receptor antagonists. The effect was mimicked by L-glutamate, AMPA, and ionomycin but not by agonists of L-type calcium channels or of metabotropic glutamate receptors. The effect of NMDA on local actin assembly was strongly attenuated by pretreatment with an actin stabilizing compound or by an antagonist of the calcium-dependent protein phosphatase calcineurin. Immunoreactivity for calcineurin was enriched at synapses together with F-actin. These results indicate that the actin-mediated stability of synaptic structure is disrupted by intense glutamate receptor activity and that calcineurin blockers may be useful in preventing such destabilization.
منابع مشابه
Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.
At the postsynaptic membrane of glutamatergic synapses, the cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and calcineurin (CaN) anchoring protein AKAP79/150 is recruited to NMDA and AMPA glutamate receptors by postsynaptic density (PSD)-95 family membrane-associated guanylate kinase (MAGUK) scaffold proteins. These signaling scaffold complexes may function to regulate receptor ph...
متن کاملSignaling between the actin cytoskeleton and the postsynaptic density of dendritic spines.
The dendritic spine may be considered a fusion of a specialized actin-based structure akin to filopodia and lamellopodia, with an excitatory postsynaptic density containing glutamate receptors and signal-transducing machinery. This specialized neuronal microdomain is the site of the majority of excitatory synaptic contacts in the mammalian brain. Regulation of spine morphology, composition, and...
متن کاملCalcium regulation of actin dynamics in dendritic spines.
Most excitatory synapses in the brain are made on spines, small protrusions from dendrites that exist in many different shapes and sizes. Spines are highly motile, a process that reflects rapid rearrangements of the actin cytoskeleton inside the spine, and can also change shape and size over longer timescales. These different forms of morphological plasticity are regulated in an activity-depend...
متن کاملThe role of drebrin in dendritic spines
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is m...
متن کامل[Structure-stability-function relationships of dendritic spines].
Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or sil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 23 شماره
صفحات -
تاریخ انتشار 1998